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Abstract

The application of formal methods to verify railway systems operate correctly is well
established within academia and is beginning to see real applications. However, many cur-
rent approaches often produce false positive results that require lengthy manual analysis.
It is accepted that so-called invariants, properties which hold for all states under which a
system operates, can help reduce occurrences of false positives. However, automated de-
duction of these invariants remains a challenge. In this work, we use reinforcement learning
to build a dataset of state observations and compute correlation coefficients between all
variables composing a program, allowing proposals for candidate invariant properties.

1 Introduction

Model checking is a formal verification technique to systematically check whether certain prop-
erties hold for different configurations (states) of a system. Provided a transition system L and
formula (or property) P, model checking attempts to verify through refutation that s |= P for
every system state s ∈ L, resulting in L |= P. The application of model checking to verify
railway signalling systems has a long history within academia and has seen some real appli-
cations in industry. One limitation of such model checking is that verification can fail due to
over approximation, typically when using techniques such as inductive verification [6]. Here,
one solution is to introduce so-called invariants, formal properties satisfied by all states, to
suppress false positives [1]. However, automatically generating sufficiently strong invariants to
help bound the region of reachable states is complex [2].

In this work, we show it is possible to use machine learning to generate candidate invari-
ants for model checking. Our methodology starts by providing a first formal mapping of state
spaces to a reinforcement learning (RL) environment. We then train agents to explore large
regions of states spaces while building a dataset of unique state observations. We demon-
strate that analysis of state observations gives rise to interesting candidate invariants. Our
framework is demonstrated on a set of generated ladder logic programs with known ground
truths. Applications to industrial ladder logic programs are then explored in the context of
railway interlockings [3]. Overall, this illustrates the viability of RL as a method for invariant
proposal, hopefully reducing false positives during verification. While machine learning lacks
the completeness guarantees of formal verification, our invariant generation process requires no
such promise. As an iterative process, candidate invariants are routinely suggested throughout
exploration where the property can then be validated via e.g inductive based model checking.

2 Proposing Invariants using Reinforcement Learning

Interlockings are safety critical systems, functionally a filter between inputs from railway op-
erators to ensure changes to the railway avoid safety conflicts. Ladder logic is a graphical
language widely used to implement Programmable Logic Controllers and in particular, indus-
trial interlocking systems. For SAT-based verification, ladder logic diagrams can be abstracted
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as propositional formulae [3]. James et al. model ladder logic execution as a labelled transition
system (LTS). Within such a setting, we show invariants can be proposed using a two-step ap-
proach. First, we devise a mapping that, given an arbitrary ladder logic program, constructs a
finite Markov Decision Process (MDP). Reinforcement learning is a machine learning paradigm
used to solve sequential decision making problems by modelling the optimal control of some
incompletely-known MDP [8]. In RL, the MDP constitutes our training environment. Here, RL
agents aim to maximise state space coverage while generating an observation dataset. Second,
we mine this dataset for invariants using statistical measures of variable correlation.

2.1 State Exploration:

Applied to our set of generated ladder logic programs, both single and multi-agent actor-critic
algorithms, A2C and A3C [5], resulted in similar levels of state coverage. A3C accelerates
training by populating multiple instances of the same environment with independent agents,
asynchronously updating a shared behaviour policy with individual experiences. A3C explo-
ration resulted in 100% coverage on programs up to a theoretical size of 230 states, dropping
to 91.16% over 240 states, and 50.52% over 250 states. Training sessions where partial coverage
was achieved often observed cumulative rewards grow linearly before collapsing to suboptimal
performance. This may be due to large network updates shifting parameters into a bad local
minimum, failing to recover within the allotted training time. For this reason, we employ trust
region models using Proximal Policy Optimisation [7] to better effect, exchanging model update
stability for longer training simulations. Applying this approach to an interlocking program,
of 26542 theoretical states, reachable state observations increased linearly up to 739372 states
over 150 hours of training, without model collapse. While the size of such environments are un-
known, metrics such as network entropy and explained variance attribute a quantitative value
to predictive uncertainty. Volatility of such measures appear to suggest a high proportion of
undiscovered states and thus motivate longer training sessions to populate our dataset.

2.2 Invariant Generation

By omitting state transitions, we can visualise the state space statically as an image. The
reachable state matrix, or ‘Staterix’, shown in Subfigure 1a provides an overview of state valu-
ations, highlighting certain program features. Program variables are read along the x-axis and
unique states along the y-axis. Blue cells indicate a value of 0, yellow cells indicate a value
of 1. Upon inspection we can explain logical statements present in the program itself and de-
vise properties which appear invariant. For example, the SingleAspect invariant proven in [3],
namely (TL1G ∨ TL1R) ∧ ¬(TL1G ∧ TL1R). While property extraction could be automated
through column-wise filtering, we suggest using ϕ correlation coefficients to compute binary re-
lations between pairs of variables. The resulting matrix, shown in Subfigure 1b, allows for more
reliable invariant suggestion, where values −1 and 1 indicate an inverse relation or positive rela-
tion. For example, the −1 between any green and red lights (traffic or pedestrian) confirms the
same SingleAspect invariant. Performing row-wise filtering would allow us to build invariants
wherever coefficient extrema exist. For example, TL1G shares a complete relation with 9 other
variables. For each binary pair, determine whether the expression is positive or inverse given
the correlation. The ‘row-wise’ property is then formed by the conjunction of these individual
expressions. To compute the correlation between two binary variables, ϕ coefficients [4] require
observations from distributions of their valuations. Hence, we expect ϕ to converge over time.
Scaling agent rewards according to observations made reducing this uncertainty should motivate
agents to pursue new states, prioritising observations which adjust correlation estimates.
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Figure 1: Reachable states and phi correlation coefficients represented as matrices.

3 Conclusion

We have explored the use of reinforcement learning for producing candidate invariants for, but
not limited to, ladder logic based state spaces. Our motivation is contextualised by the invariant
finding problem for model checking and the reduction of false positives during verification.
Overall our results illustrate the viability of machine learning as a means of suggesting invariants
for model checking. In future we aim to explore pattern mining over all agent observations to
identify invariants across state sequences. Temporal clustering of unique sequences may also
allow mining for persistent state sequences, possibly indicative of event-bound invariants.
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