
Counterfactual Causality in Networks

Georgiana Caltais and Can Olmezoglu

University of Twente, The Netherlands
g.g.c.caltais@utwente.nl , c.olmezoglu@utwente.nl

1 Introduction & Background

The main objective of an engineer is to build systems which follow a predefined behaviour.
Explaining when a system fails to follow through that behaviour has thereby gained a lot of
attention as engineering rose to prominence. In this abstract, we propose a framework for
explaining violations of safety properties in Software Defined Networks (SDNs), using counter-
factual causal reasoning [7].

SDN has gained a lot of traction due to its increased network management and pro-
grammability, achieved by decoupling the control plane from the data plane [8], in contrast
with traditional networks. SDN technologies can play an important role in solving issues
concerning big data applications, including data processing in cloud data centers, optimisa-
tions and data delivery. In this abstract, we focus on DyNetKAT –a rigorous framework for
modelling and analysing (multi-)packet forwarding within an SDN, and communication be-
tween data and control planes– introduced in [3] by a subset of the authors. DyNetKAT is
based on NetKAT [1], a minimalist language based on Kleene Algebra with Tests, supported
by a sound and complete axiomatisation. Packets in (Dy)NetKAT are encoded as sets of
fields and associated values {f1 = v1, . . . fn = vn}. NetKAT can model the forwarding of
a single packet within a network, and includes constructs such as dropping of packets (0),
acceptance of packets (1), multicast (+), packet fields modification (f ← n) and repeated ap-
plication (∗) of these policies. In addition, NetKAT can be used to build packet histories using
the dup construct, which was dropped in [3]. DyNetKAT extends NetKAT with channel-
based communication (||, x?p, x!p) of flow tables (p) between the data and control planes
(with synchronous communication of p on channel x encoded as rcfg(x,p)), no-behaviour
policies (⊥), non-deterministic choice (⊕), recursive specifications (X) and multi-packet se-
mantics in the context of a sequential composition operator (;) that marks the fetching of
a new packet in the packet queue. In contrast with NetKAT, DyNetKAT has an opera-
tional semantics that entails LTS models, and a sound and ground complete axiomatisation
in the style of the Algebra of Communicating Systems (ACP). The syntax of DyNetKAT is:
N ::= NetKAT−dup D ::= ⊥ | N ;D | x?N ;D | x!N ;D | D ||D | D ⊕ D | X with X ≜ D.
The complete framework is defined in [3]. Similarly to [3], we consider guarded DyNetKAT
specifications that can be reduced to equivalent expressions in head normal form (Lemma 7
in [3]). This, in turn, guarantees the existence of finite LTS models for DyNetKAT specifica-
tions with finite number of recursive variables, finite sets of channel names and packet fields
over finite domains.

We base our SDN safety failure explanations on the so-called counterfactual causality, or
actual causality, introduced in the seminal work [7], and adapted in [2] to the context of finite
automata (as SDNmodels) and regular expressions (as a language for defining safety properties).
Intuitively, (a sequence of) events c are considered causal with respect to the realisation of a
hazard e whenever (i) c is necessary for e to happen, (ii) c not happening entails e not happening
(this is known as the counterfactual test), (iii) there is no c′ “simpler” than c that can satisfy
the conditions above. In addition, there might be the case that despite c being observed, e does

1



n0 : (C2 ||S2 ||C1 ||S1, σ1::σ3::⟨⟩, ⟨⟩) . . .n1 : (C2 ||S2′ ||C1 ||S1, σ1::σ3::⟨⟩, ⟨⟩)

n2 : (C2′ ||S2′ ||C1′ ||S1′, σ1::σ3::⟨⟩, ⟨⟩) n3 : (C2′ ||S2′ ||C1′ ||S1′, σ3::⟨⟩, σ2::⟨⟩)

n4 : (C2′ ||S2 ||C1′ ||S1′, ⟨⟩, σ4::σ2::⟨⟩)

NoV irtualCircuit?1,
rcfg(NoVirtualCircuit,1)

V irtualCircuitReq!1,
rcfg(VirtualCircuitReq,1)

rcfg(VirtualCircuitEnd,1)

(σ1, σ2)

(σ3, σ4)

Figure 1: Virtual Circuit LTS (excerpt)

not happen due to some other cancelling actions (e.g., the forest does not burn down, despite
the lightning, because the firefighters arrive on time). Such situations are modelled by means of
contingencies in [7] or events causal by their non-occurrence in [2, 4]. The causal analysis in [2]
is performed in the context of FA models, and safety violations, or hazards encoded as regular
expressions defined in the standard fashion: e ::= 0 | 1 | a | e ; e | e + e | e∗. The computed
causes are words, or decorated traces w0 a0 w1 a1 . . . an wn where a0 a1 . . . an is a word which, if
executed, leads to the hazard e, and wi ranges over contingencies that disable the hazard. Note
that wi play an important role in describing fixes, or alternative safe scenarios.

Our contribution. First, we devise and implement an algorithm that computes the LTS
models of DyNetKAT programs. Then, we transform the aforementioned LTSs into FA models
in a straightforward fashion, by handling every state as accepting. The generated FAs can be
further analysed according to the causal inference machinery in [2]. We explain our approach
based on a running example –a faulty virtual circuit that allows illegal packet forwarding–.

2 Running Example

A virtual circuit is created for the delivery of a bit stream between a source host and a destina-
tion host [10], denoted by H1 and, respectively, H3 in the example of Figure 2. However, when
necessary, another host such as H2 in Figure 2 should be able to send external packets to H3,
provided that H3 is not currently receiving a bit stream. Controller C1 oversees the network
and sends messages to network devices C2, S1 and S2, deciding when packets from H2 are
forwarded or whether a virtual circuit between H1 and H3 can be initiated. For example, if
H2 wants to send something to H3, the switch S2 connecting H2 and H3 checks whether there
is a virtual circuit between H1 and H3 by querying C1. When a virtual circuit needs to be
initiated, C2 informs C1 to make sure other packets are not being sent while the virtual circuit
is active. After receiving this information, C1 stops allowing external packets from H2 to be
forwarded to H3. In equation (1) we provide a DyNetKAT formalism for the running example.

A hazardous situation in the running example can happen when a virtual connection between
H1 and H3 is active and processing a packet σ1 into σ2, indicating switch S1 forwarding the
package from port 1 to port 2, depicted in red color in Figure 2. As this forwarding operation
is happening, a packet σ3 from H2 is processed into σ4 and forwarded to H3 by S2. As the
circuit is already active and using most of the resources of H3, the arrival of σ4 at H3 might
lead to an overflow error.

The LTS behavioural model of the DyNetKAT program in Figure 2 can be devised according
to the DyNetKAT operational semantics. An excerpt of this LTS is provided in Figure 1. For



instance, the trace rcfg(NoVirtualCircuit,1) rcfg(VirtualCircuitReq,1) originating in n0

leads to the state n2 witnessing the hazard h ≜ ((σ1, σ2); (¬V irtualCircuitEnd!1)∗; (σ3, σ4);A
∗).

The next goal is to exploit the causal machinery in [2] and derive causal explanations for safety
failures in SDN in an automated fashion.

Figure 2: The Virtual Circuit

C1 ≜ NoV irtualCircuit!1;C1⊕
V irtualCircuitReq?1;C1′

C1′ ≜ V irtualCircuitEnd?1;C1

C2 ≜ V irtualCircuitReq!1;C2′

C2′ ≜ V irtualCircuitEnd!1;C2

S1 ≜ V irtualCircuitReq?1;S1′

S1′ ≜ ((port = 1).(port← 2));S1′⊕
V irtualCircuitEnd?1;S1

S2 ≜ NoV irtualCircuit?1;S2′

S2′ ≜ ((port = 3).(port← 4));S2

Init ≜ C1||S1||S2||C2

(1)

3 Methodology, Results and Extensions

The implementation for creating the LTS from DyNetKAT specifications is explained below
and can be found at https://github.com/canolmezoglu/DyNetiKAT.

Methodology: To generate the LTS models, the prototype implementation 1 from [3] was
chosen as the base implementation for parsing an inputted DyNetKAT specification. This
implementation was modified using Maude [5] to classify different operators of DyNetKAT.
Following the parsing, we implemented in Python an algorithm that exploits the operational
semantics from [3] and extracts the LTS from the parsed specification. To obtain the causes
from the LTS, we used Algorithm 1 from the work in [2], where the LTS was converted into a
FA model by considering all the states of the LTS as accepting states.

Results: Upon conducting this methodology on the specification of the running example in
Section 2, and using the regular expression h as the hazard, four causal explanations can be
identified as (the minimal) traces leading from n0 to n2. These traces entail a race condition
arising between the controllers when the virtual circuit was first made active. Note that, for the
case study in this paper, there are no contingencies that can be used to steer the aforementioned
causal explanations away from the undesired effect h. Hence, the actual causes coincide with
the traces witnessing h in the LTS model of the virtual circuit in (1).

Extensions: Currently, we are working on developing a tool for extracting DyNetKAT specifi-
cations from real SDN data, based on the logs in [6] and OpenFlow [9]. The latter is a protocol
that can manipulate the control logic of a network and program the flow table of network
switches. As OpenFlow networks are working, or when they are simulated, all the modifica-
tions are stored in the form of logs, describing what flow table updates have been made by
which controller and for which network devices. Using these logs, such as ones that could be
obtained from the work in [6], the state changes of the network switches can be inferred and
converted into DyNetKAT specifications. These specifications can be used for causal analysis
on real world data, as well as benchmarking the current prototype implementation.

1https://github.com/hcantunc/DyNetiKAT

https://github.com/canolmezoglu/DyNetiKAT


References

[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. Netkat: semantic foundations for networks. In Suresh Jagannathan
and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 113–126.
ACM, 2014.

[2] Marcello M. Bonsangue, Georgiana Caltais, Hui Feng, and Hünkar Can Tunç. A language-based
causal model for safety. In Yamine Aı̈t Ameur and Florin Craciun, editors, Theoretical Aspects of
Software Engineering - 16th International Symposium, TASE 2022, Cluj-Napoca, Romania, July
8-10, 2022, Proceedings, volume 13299 of Lecture Notes in Computer Science, pages 290–307.
Springer, 2022.

[3] Georgiana Caltais, Hossein Hojjat, Mohammad Reza Mousavi, and Hünkar Can Tunç. Dynetkat:
An algebra of dynamic networks. In Patricia Bouyer and Lutz Schröder, editors, Foundations of
Software Science and Computation Structures - 25th International Conference, FOSSACS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13242 of Lecture Notes in Computer
Science, pages 184–204. Springer, 2022.

[4] Georgiana Caltais, Mohammad Reza Mousavi, and Hargurbir Singh. Causal reasoning for safety
in hennessy milner logic. Fundamenta Informaticae, 173(2-3):217–251, 2020.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and Jose F. Quesada. The maude system. In Paliath Narendran and Michaël Rusinowitch, editors,
Rewriting Techniques and Applications, 10th International Conference, RTA-99, Trento, Italy,
July 2-4, 1999, Proceedings, volume 1631 of Lecture Notes in Computer Science, pages 240–243.
Springer, 1999.

[6] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin T. Vechev.
Sdnracer: concurrency analysis for software-defined networks. In Chandra Krintz and Emery D.
Berger, editors, Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 402–
415. ACM, 2016.

[7] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model approach —
part 1: Causes. CoRR, abs/1301.2275, 2013.

[8] Keith Kirkpatrick. Software-defined networking. Commun. ACM, 56(9):16–19, 2013.

[9] Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M. Parulkar, Larry L. Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan S. Turner. Openflow: enabling innovation in
campus networks. Comput. Commun. Rev., 38(2):69–74, 2008.

[10] Larry L. Peterson and Bruce S. Davie. Computer networks - a systems approach (3. ed.). Morgan
Kaufmann, 2003.


	1 Introduction & Background
	2 Running Example
	3 Methodology, Results and Extensions
	References

