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Introduction. The class #P was defined in Valiant’s seminal paper [1] to capture the
complexity of computing the permanent of a square matrix and it is the class of count-
ing versions of NP problems. A function f : Σ∗ → N belongs to #P if there is a non-
deterministic polynomial-time Turing machine (NPTM) M such that for every x ∈ Σ∗,
f(x) = #(accepting paths of M on x). And since accepting paths correspond to solutions of
computational problems, a function in #P is the problem of counting the number of solutions
of the corresponding NP problem. For example, #Sat is a function that maps an input formula
to the number of its satisfying assignments.

Since very few counting problems can be exactly computed in polynomial time—an example
is counting spanning trees in a graph, which can be reduced to computing the determinant of
a matrix—the interest of the community has turned to the complexity of approximating them.
To this end, the class #PE [2] is of great significance. #PE contains #P functions the decision
versions of which are in P—i.e. for any f ∈ #PE, we can decide whether a given x is a zero
value of f in polynomial time. To the best of our knowledge, almost all approximable problems
have a decision version in P.

We focus on a subclass of #PE, namely TotP [3], that is the class of functions that count the
total number of paths of NPTMs. Notably, TotP contains all self-reducible #PE functions [4],
and it is robust [5], in the sense that it has natural complete problems [6] and it is closed under
addition, multiplication and subtraction by one. The connection of the class of approximable
counting problems to TotP has been emphasized in [5], and the relationship of these two classes
has been examined in [7].

In this work we address the open question of [5] about the descriptive complexity of TotP.
We provide a logical characterization of TotP based on the framework of Quantitative logics
introduced in [5]. Descriptive complexity is an interesting area of complexity since it links
syntactic restrictions for specifications to general algorithmic guarantees. Fagin’s fundamental
theorem [8] gives a correspondence between the class NP and the class of problems that can be
expressed in existential second-order logic, denoted by ∃SO, over finite structures. So, existential
quantification over second-order variables suffices in order to express the existence of a solution
to an NP problem. It is a natural consequence that counting the number of second-order
variables for which a formula is satisfied in some structure, results in a logical characterization
of #P. Recently, Arenas et al. [5] incorporated counting into the syntax of the logic by allowing
the use of the quantitative quantifiers Σ and Π—an addition and a multiplication quantifier,
respectively—in addition to the boolean quantifiers ∃ and ∀. In this context, ΣQSO(FO) = #P
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over finite ordered structures. The part ΣQSO reflects the fact that Σ quantitative quantifier is
used over second-order variables (whereas Π quantifier is not allowed) and (FO) indicates that
boolean quantifiers are used only over first-order variables. An example is given in Table 1.
Arenas et al. also added recursion over functions at the quantitative level to capture the classes
FP—the class of polynomial-time computable functions—and #L [9].

∃SO = NP
over finite structures

G contains a clique of any size iff
G |= ∃X∀x∀y

(
X(x) ∧X(y) ∧ x ̸= y) → E(x, y)

ΣQSO(FO) = #P
over finite ordered

structures

#(cliques of G) =
[[ΣX.∀x∀y

(
X(x) ∧X(y) ∧ x ̸= y) → E(x, y)]](G)

Table 1: The decision and counting versions of the Clique problem expressed in the logics
introduced by Fagin and Arenas et al., respectively. The input structure G is over vocabulary
⟨E2⟩ with one relational symbol E of arity 2 representing the edge relation.

Descriptive complexity of the class TotP. The idea we are using to capture TotP
is the following: 1. Start with a logic that expresses the computation of an NPTM, 2. If a
branching is found during the computation, add 1, and then continue recursively, and 3. Stop
after a polynomial number of steps. To achieve the recursion needed here, we generalize the
notion of recursion defined in [5]; Instead of recursion over functions the arguments of which
are first-order variables and the definition of a least-fixed point, we introduce recursion over
functions that take second-order variables as arguments and we define a fixed-point of polyno-
mial depth which is called polynomially-bounded fixed point (or p-bounded fixed point), denoted
by pbfp.

Contribution. The logical characterization of TotP is related to the following major open
question "Can we provide a logical characterization of counting problems that are approx-
imable?". Saluja et al. proved that given a formula which expresses a counting problem, it
is undecidable whether the problem is approximable (under the widely believed assumption
that RP ̸= NP) [10]. The study of the descriptive complexity of counting problems that are
eligible to have efficient approximation algorithms—in specific, counting problems whose de-
cision version is easy—has been a more fruitful approach [10, 5, 7]. The relationship of the
classes defined in this context to the class of approximable counting problems has also been
determined. The logical characterization of TotP, namely the class that contains self-reducible
problems with an easy decision problem, still remains open. This work settles this open question
by providing a logic that captures TotP over finite ordered structures.
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