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Abstract
In this work we present the categorical semantics of first-order temporal logics, provid-

ing our models by means of relational presheaves and adopting the perspective of counter-
part semantics. We also illustrate a computer-assisted formalization of these constructions
using the proof assistant Agda, highlighting the crucial aspects of our formalization and the
practical use of (quantified) temporal logics in a constructive proof assistant. We employ
the agda-categories library to capture the notions of category theory in our setting.

Introduction
Temporal logics have proven to be one of the most well-established and effective techniques
for the verification of both large-scale and stand-alone programs. Research on temporal log-
ics, among many other aspects, focused on sufficiently expressive fragments of logics that are
suitable for the specification of complex multi-component systems. A prominent use case is for
example that of graph logics [1, 2], where states are specialized as graphs and transitions are
families of (partial) graph morphisms. These logics combine temporal and spatial reasoning
and allow, for example, to express the possible transformation of a graph topology over time.

One of the defining characteristics of graph logics is that they permit reasoning and express-
ing properties on the individual elements of the graph, thus suggesting for the use of (first-order)
quantified temporal logics. In order to account for the evolution of elements in time, in many
practical applications the models under consideration need to be able to adequately express
the creation, dellocation, merging, and possibly duplication of elements. Take, for example,
the scenario of processes being allocated and freed in memory. A possible approach to the
representation of these models is the counterpart paradigm proposed by Lewis [3]: each state of
the transition system identifies a local set of elements, and possibly partial morphisms carry the
identity of elements from one state to the other. This perspective is applied in [4] to model a
counterpart-based µ-calculus with second order quantifiers, and it is generalized to a categorical
setting in [5] using relational presheaves by building on the ideas of [6].

In this work we describe a categorical semantics for a first-order linear temporal logic QLTL
that can reason about the temporal evolution of many-sorted algebras, along with a formaliza-
tion of this logic and its semantics in Agda. For a complete overview of these results, we refer to
[7]. A formal presentation of modal and temporal logics in a proof assistant effectively provides
a playground in which the mechanisms and the validity of these logics can be expressed, tested,
and experimented with. Moreover, given the constructive interpretation of the Agda code, our
formalization essentially codifies a procedure to convert classical set-theoretical notions into
categorical ones in the setting of temporal logics, further showing the correctness and coher-
ence of the ideas presented by previous authors in [5]. This work also establishes the usefulness
and flexibility of the agda-categories library from the point of view of practical applications.
The Agda formalization is available at https://github.com/iwilare/categorical-qtl.
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Figure 1: An algebraic counterpart W-model and its corresponding category Wop.

Counterpart Semantics via Relational Presheaves
We now introduce the models of our logic by sketching the notion of algebraic counterpart
W-model on a given many-sorted algebraic signature Σ. Our models provide the following: a
category W, where each object represents a world in a given instant of time, and morphisms
represent temporal evolutions; for each sort τ ∈ Sorts(Σ), a so-called relational presheaf JτK :
Wop → Rel is provided, where Rel is the category of sets and relations. Such a presheaf assigns
to each world a set of individuals and to each morphism a corresponding relation between worlds.
Following the counterpart paradigm, the individuals of two worlds are related by a relation R
when they are the same individual after a temporal evolution, and we say that the individual
in the next world is a counterpart of the individual in the previous one. Finally, opportune
morphisms of relational presheaves are given to represent the set functions of the algebras in
each world. A graphical representation of a model is shown in Figure 1 by taking as example the
signature of graphs Gr, where we indicate the graph edges with solid arrows and the counterpart
relations with dashed arrows, without distinguishing the two relations connected the nodes and
edges of the algebras.

We now give the syntax of our quantified (linear) temporal logic QLTL on the previously
defined models. Given a set of denumerable variables X with x ∈ X , the set AQLTL of QLTL
formulae-in-context is given by

ϕ := true | m =τ n | ¬ϕ | ϕ1 ∨ ϕ2 | ∃τx.ϕ | Oϕ | ϕ1Uϕ2 | ϕ1Wϕ2,

where m and n are terms on the Σ-algebra with the same sort τ ∈ Sorts(Σ). The next operator
Oϕ expresses the fact that a given individual has at least one counterpart at the next state
where ϕ holds, and the until operator ϕ1Uϕ2 indicates that the counterparts of an individual
exist and satisfy the property ϕ1 until a point in time where a counterpart satisfies ϕ2.
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In our example, we can express properties on both the structure and the temporal evolution of
the graphs. For instance, we define the following formulae about existence of nodes and loops
in a graph:

loop(e) := s(e) =Node t(e),
presentτ (x) := ∃τy.x =τ y,

nextStepDeallocatedτ (x) := presentτ (x) ∧ ¬Opresentτ (x),
nodeHasLoop(n) := ∃Edgee.s(e) =Node n ∧ loop(e),

willBecomeLoop(e) := ¬loop(e) ∧ presentEdge(e)U loop(e),

and we have that the following sets of individuals satisfy the given formulae in some worlds:

J[e : Edge] nextStepDeallocated(e)Kw0
= {e2},J[n : Node] nodeHasLoop(n)Kw2
= {n5},J[e : Edge] willBecomeLoop(e)Kw0 = {e0}.

Positive normal forms
Our Agda implementation enables the possibility to prove metatheorems and construct algo-
rithms that can operate on the semantics of the logic and its models. One example of such a
metatheorem is the investigation of a suitable positive normal form of this logic, which we also
formalize in Agda by considering both the case of counterpart relations as partial functions
and as general (possibly duplicating) relations. This additional development is available at
https://github.com/iwilare/qltl-pnf. Aside from the standard applications in the setting
of temporal model checking, such a presentation is crucial in our setting of constructive proof
assistants due to the intuitionistic interpretation of negation: first, because the lack of classi-
cal reasoning limits the expressiveness of our logic to just its intuitionistic fragment, and for
example we cannot prove in Agda that the QLTL formula ¬¬ϕ =⇒ ϕ is validated for every
possible choice of model and subformula ϕ; second, because negation in subformulae can be
particularly tricky to deal with, as it forces the user to prove the validity of formulae with a
reductio-ad-absurdum approach instead of having to show that a direct formula holds.

Conclusion and Future work
In our talk we will introduce the most salient aspects of the formalization of our logic QLTL
and its use in a proof assistant, along with a brief presentation of its categorical semantics.

Embedding our temporal logic in a proof assistant also enables the user to leverage the
assistant part of the tool. This can be done by the use of either internal or external solvers:
in the first case, one defines (verified) model checking algorithms in Agda itself by restrict-
ing to models where each counterpart relation is finite, possibly by also exploiting reflection
mechanisms [8]; in the second case, the implementer of the logic writes bindings to connect
the proof assistant with external programs, such as model checkers or SMT and SAT solvers,
so that proving the formula or providing a counterexample is offloaded to a more efficient and
specialized program [9]. A possible extension of this work could be the implementation of either
of these mechanisms to the setting of counterpart models and their semantics.
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