
Iterated Processes with Finite Interaction Type
Extended Abstract

Chad Nester

Tallinn University of Technology

Abstract

We propose an interpretation of certain cells of the free cornering of the category of
partial recursive functions as iterated processes with finite interaction type. Put another
way, we propose a model of composable interactive computation formally grounded in the
free cornering of a monoidal category.

1 The Free Cornering

To begin, we briefly recapitulate the construction and interpretation of the free cornering of a
symmetric monoidal category. The free cornering was introduced in [7] as a way to think about
interacting processes. It plays an important role in the generalised accounting formalism of [6],
and seems to be of foundational importance in the study of bidirectional transformations [1].

Our development is framed by the resource-theoretic understanding of symmetric monoidal
categories [2]. Objects are understood of as collections of resources. The tensor product A⊗B
of two objects is the collection consisting of A and B, and the unit I is the empty collection.
Morphisms are understood as transformations, with f : A → B giving a way to tranform the
resoures of A to the resources of B. We adopt the resource-theoretic perspective here, using
the associated vocabulary to elucidate our formal development.

Definition 1 ([7]). Let A be a symmetric monoidal category. Define the monoid A◦• of A-valued
exchanges to be the free monoid on the set of polarized objects of A, as in A◦• = A0 × {◦, •}∗.
We write elements of A◦• as in A◦ ⊗B• ⊗C• where A,B,C are objects of A. The unit of A◦•

(the empty sequence) is denoted I and the monoid operation is sequence concatenation.

Each A-valued exchangeX1⊗· · ·⊗Xn ∈ A◦• involves a left participant and a right participant
giving each other resources in sequence, with A◦ indicating that the left participant should give
the right participant an instance of A, and A• indicating the opposite. For example say the
left participant is Alice and the right participant is Bob. Then we can picture the exchange
A◦ ⊗B• ⊗ C• as:

Alice⇝ ⇝Bob

Think of these exchanges as happening in order. For example the exchange pictured above
demands that first Alice gives Bob an instance of A, then Bob gives Alice an instance of B,
and then finally Bob gives Alice an instance of C.

Definition 2 ([7]). Let A be a monoidal category. We define the free cornering of A, written
⌜
⌞A⌝⌟, to be the free single-object double category on the following data:

• The horizontal edge monoid (A0,⊗, I) is the object monoid of A

• The vertical edge monoid is A◦•
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• The generating cells consist of cells ⌜
⌞f

⌝
⌟ for each morphism f : A → B of A subject to

equations as in:

along with the following corner cells for each object A of A:

which are subject to the yanking equations:

For a precise development of free double categories see [3]. Briefly, cells are formed from
the generating cells by horizontal and vertical composition, subject to the axioms of a double
category in addition to any generating equations. The corner structure has been heavily studied
under various names including proarrow equipment, framed bicategory, connection structure, and
companion and conjoint structure. A good resource is the appendix of [8].

Cells of ⌜
⌞A⌝⌟ can be understood as interacting morphisms of A. Each cell is a method of

obtaining the bottom boundary from the top boundary by participating in A-valued exchanges
along the left and right boundaries in addition to using the arrows of A. For example, if the
morphisms of A describe processes involved in baking bread, we might have the following cells
of ⌜

⌞A⌝⌟:

The cell on the left describes a procedure for transforming dough into nothing by kneading it
and sending the result away along the right boundary, and the cell in the middle describes a
procedure for transforming an oven into bread and an oven by receiving dough along the left
boundary and then using the oven to bake it. Composing these cells horizontally results in the
cell on the right via the yanking equations. In this way the free cornering models concurrent
interaction, with the corner cells capturing the flow of information across different components.

2 Iterated Processes with Finite Interaction Type

Let K1 be the category of partial recursive functions. Specifically, objects are powers of
N and arrows Nn → Nm are partial recursive functions f such that if f(x1, . . . , xn) ↓ then
f(x1, . . . , xn) = (y1, . . . , ym). Composition and identities are as with functions.
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Cells of ⌜
⌞K1

⌝
⌟ may be thought of as processes with finite interaction type. Operationally, we

ask that each such process be equipped with two input streams and two output streams, one
of each sort associated with both the left and right boundary of the corresponding cell. Now
evaluation proceeds by computation, with the values received and sent out along the boundaries
coming from and being sent out along the appropriate input or output stream. To compose
cells of ⌜

⌞K1
⌝
⌟ is to compose processes. When processes are composed horizontally, the input

stream associated with each component is generated by the output stream associated with the
other component, which is compatible with the yanking equations.

The finitary nature of these processes is a significant restriction. This can be overcome by
considering only those cells of ⌜

⌞K1
⌝
⌟ with equal top and bottom boundary. Operationally, we

treat these cells as iterated processes, which repeat the action specified by the cell forever. The
top/bottom boundary allows the state of the system to persist across multiple iterations of a
process. Composition of cells of ⌜

⌞K1
⌝
⌟ is now composition of (iterated) processes.

Example 1. A persistent Turing machine is a Turing machine with three tapes: a read-only
input tape, a write-only output tape, and a read-write tape for keeping track of internal state
[4]. To operate a persistent Turing machine we require input and output streams corresponding
to the input and output tapes. At each stage of computation, the head of the input stream is
written to the input tape, the machine performs some computation, and then the contents of
the output tape become the next value of the output stream. This is then repeated indefinitely,
giving a model of interactive computation. Persistent Turing machines correspond to the cells
of ⌜

⌞K1
⌝
⌟ (understood as iterated processes) with the following form:

where the wires labelled I, O, and S correspond to the input tape, output tape, and internal
state tape, respectively.

We propose cells of ⌜
⌞K1

⌝
⌟ with equal top and bottom boundary, understood as iterated

processes with finite interaction type, as a model of composable interactive computation. A
great deal of further research is necessary to validate this proposal. In particular it remains to
implement ⌜

⌞K1
⌝
⌟ with this interpretation, although we imagine there are no significant obstacles

to this. A fully formal version of the proposed operational semantics is also desirable, as it would
allow us to consider the question of whether or not the equations of the free cornering are enough
to characterise operational equivalence of processes. We note that there is a satisfying notion
of process motion in the sense of [5], in which a process α with internal state of type A may
move to a process β with internal state of type B through an intermediary arrow f : A → B.
Operationally, we apply f to the state of α at the end of an iteration, and continue as β. Another
important question is how we might formally specify patterns of motion that an iterated process
may exhibit.

While this research is at an early stage, we find the interpretation of ⌜⌞K1
⌝
⌟ as iterated processes

with finite interaction type compelling, and would welcome the opportunity to discuss these
ideas with the wider research community.
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