
Denotational and Algebraic Semantics for the CaIT
calculus

Ningning Chen and Huibiao Zhu

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn

Abstract
The practical applications of the Internet of Things (IoT) have sprung up worldwide,

making IoT systems more complex. Therefore, it is desirable to model and reason about
IoT systems theoretically, especially from the perspective of formal methods, to ensure
their quality, reliability, and security. Thus, the Calculus of the Internet of Things (CaIT)
has been proposed to model the interactions among components and verify the network de-
ployment to ensure the quality and reliability of IoT systems. However, the CaIT calculus
can only support point-to-point communication, while broadcast communication is more
common in IoT systems. Hence, this paper updates the CaIT calculus by replacing its
communication primitive with the broadcast. Based on the Unifying Theories of Program-
ming (UTP), we further explore its denotational semantics and algebraic semantics, with
a special focus on broadcast communication, actions with the timeout (e.g. input actions
and migration actions), and channel restriction. To facilitate the algebraic exploration of
parallel expansion laws, we further extend the CaIT calculus with a new concept called
guarded choice, which allows us to transform each program into a guarded choice form.

1 Introduction
With the increasing demand for applications and technologies of IoT, a variety of promising
technologies (such as 5G, high speed, low latency networks) have been applied to the IoT
paradigm, meeting the demands of a series of advanced technologies, such as machine learning,
edge computing, and Industry 4.0. However, most of the existing studies on IoT focus on its
practical applications, and little work has been done to model interactions between components
in IoT systems and check IoT network deployments before practical implementation.

Lanese et al. presented the first calculus for IoT, named IoT-calculus, designed to capture
some fundamental characteristics of IoT systems. Subsequently, Bodei et al. proposed a secure
untimed process calculus, called IoT-LYSA, which employs static analysis technologies to track
the sources and paths of IoT data and detect how they influence smart objects. Neither IoT-
calculus nor IoT-LYSA considers the effect of time on process actions. Thus, Lanotte et al.
presented the CaIT calculus to model discrete timed behaviors with consistency and fairness
properties [1]. However, the CaIT calculus only supports point-to-point communication, not
broadcast communication. According to bπ−calculus, broadcast primitives have the following
advantages: processes may interact without explicit knowledge of each other and receivers can
be dynamically added or removed without modifying the sender.

As described in Hoare and He’s Unifying Theories of Programming (UTP) [2], three methods
can be used to represent the semantics of a programing: operational semantics, denotational
semantics, and algebraic semantics. The operational semantics provides a set of transition rules
to simulate how a program works. The denotational semantics explains what a program does
from a purely mathematical point of view. The algebraic semantics includes a series of algebraic
laws, which is well suited to the symbolic calculation of parameters and structures of an optimal
design. The operational semantics of the CaIT calculus has been explored in [1].



Denotational and Algebraic Semantics for the CaIT calculus Chen et al.

This paper has been accepted by ICTAC 2022 [3], and its main contributions are as follows:
• We enrich the CaIT calculus by replacing point-to-point communication with broadcast

communication.
•We explore the denotational semantics of the CaIT calculus, involving the basic commands,

the guarded choice, the parallel composition, and channel restriction.
• We investigate the algebraic semantics of the CaIT calculus, especially the algebraic laws

of channel restriction. By establishing the algebraic laws for the parallel composition of guarded
choice components, we can describe any program as a guarded choice form.

2 The CaIT Calculus
2.1 Syntax
In this subsection, we only introduce some vital process actions (also called basic commands).
Please refer to [3] for a more complete description of the CaIT calculus.
Network Level:

(1) (vc′)M indicates that channel c′ is private to network M .
(2) n[Γ ./ P ]ul denotes a network node, where n is the node ID, P is the process modelling

the logic of this node, l records its current location, and Γ is its physical interface. u is given
to differentiate between stationary nodes (if u = s) and mobile nodes (if u = m).
Process Level:

(1) bπ;P cQ stands for some actions which execute with the timeout, where π ∈
{?(x)c, move_k}. For b?(x)c;P cQ, if a value can be received via channel c within one time
unit, it continues as process P after that. Otherwise, Q runs after one time unit. bmove_k;P cQ
illustrates the node mobility, which is similar to the input statement.
2.2 Guarded Choice
To support our investigation of the algebraic parallel expansion laws, we extend the CaIT
calculus with the following three types of guarded choices. By using our algebraic parallel
expansion laws, we aim to transform every program into the form of guarded choices.

• Instantaneous Guarded Choice: []i∈I{gi → Ni},
where, gi ∈ {!〈v〉c@l, ?(x)c@l, c.[v/x]@(l, l1), s?y@l, a!v@l, move_k@l, bi&τ@l}.

• Delay Guarded Choice: #t→ N

• Hybrid Guarded Choice: []i∈I{gi → Ni}
⊕∃t′ ∈ (0 . . . 1) •#t′ → N ′

⊕#1→ N ′′

3 Denotational Semantics and Algebraic Semantics
3.1 Denotational Semantics
We present the denotational semantics of the CaIT calculus by taking the input statement, the
parallel composition, and channel restriction as examples. We use beh(N) to stand for the
denotational semantics of the network N .
• (Input) The denotational semantics of the input statement is classified into three branches.
The first branch indicates that the input action happens at the triggering time. In the second
branch, the input command occurs after t′ time units. The last branch shows that this input
command does not happen within one time unit.

beh(n[Γ ./ b?(x)c;P cQ]ul ) =df


∃m ∈ Type(c) • beh(?(m)c@l); beh(n[Γ ./ P [m/x]]ul ) ∨ (1.1)
∃t′ ∈ (0 . . . 1) • beh(#t′);∃m ∈ Type(c) • beh(?(m)c@l);

beh(n[Γ ./ P [m/x]]ul ) ∨ (1.2)
beh(#1); beh(n[Γ ./ Q]ul ) (1.3)


2



Denotational and Algebraic Semantics for the CaIT calculus Chen et al.

• (Parallel Composition) We discuss the denotational semantics of the parallel compositions. Pred-
icate Merge merges states, termination time, and the traces contributed by networks N1 and N2 [3].

beh(N1‖N2) =df


∃st1, st′1, st2, st′2, time1, time′1, time2, time′2, tr1, tr′1, tr2, tr′2•

st1 = st2 = st ∧ time1 = time2 = time ∧ tr1 = tr2 = tr ∧ (1)
beh(N1)[st1, st

′
1, time1, time

′
1, tr1, tr

′
1/st, st

′, time, time′, tr, tr′] ∧ (2)
beh(N2)[st2, st

′
2, time2, time

′
2, tr2, tr

′
2/st, st

′, time, time′, tr, tr′] ∧ (3)
Merge (4)


• (Channel Restriction) Based on the denotational semantics of network M , we can further gain
the denotational semantics of (vc′)M (Page 2). We need to remove the snapshots which record output
actions and synchronous communication actions occurring on c′ from the trace of M .

beh((vc′)M) =df

(
beh(M)[Re(tr′ − tr, c′)/tr′ − tr, div/str′]
/Diverge(beh(M), c′) . beh(M)[Re(tr′ − tr, c′)/tr′ − tr]

)
,

The condition Diverge(beh(M), c′) is used to check whether the concealment of channel c′ leads
to the behaviour of M (i.e., beh(M)) diverge. If it is true, the final state is a divergence state (i.e.,
div). The function Re(s, c′) is defined to remove snapshots involving c′ from trace s.

3.2 Algebraic Laws
In this subsection, we explore the algebraic laws of the CaIT calculus, involving basic commands (using
the input statement as an example), parallel compositions, and channel restriction.

• (Input) n[Γ ./ b?(x)c;P cQ]ul =?(x)c@l→n [Γ ./ P ]ul

⊕ ∃t′ ∈ (0 . . . 1) •#t′ →?(x)c@l→n [Γ ./ P ]ul

⊕#1→n [Γ ./ Q]ul

• (Parallel Composition) Now we explore the algebraic laws for parallel compositions, especially
the parallel compositions of guarded choices. To support the parallel expansion laws, two components
of a parallel process can both be one of the three types of guarded choices, as shown in Table 1.

Table 1: Parallel composition of two guarded choices
Instantaneous Delay Hybrid

Instantaneous (par-4-1), (par-4-2) (par-5) (par-6)
Delay (par-7) (par-8)
Hybrid (par-9)

• (par-5) []i∈I{gi → Ni}‖#t→M = []i∈I{gi → (Ni‖#t→M)}

Here, we take (par-5) as an example to illustrate the details of Table 1. (par-5) describes the
parallel composition of the instantaneous guarded choice and the delay guarded choice.
• (Channel Restriction) Based on the above algebraic laws, we can transform any program (e.g.,M)
without restricted channels into a guarded choice form. To further deal with the channel restriction (i.e.,
(vc′)M), we give a law to replace output actions and synchronous communication actions occurring on
channel c′ with the silent action (i.e., true&τ@l). For other actions occurring in M , such as delaying
actions, communication actions that do not involve c′, etc., (vc′)M is consistent with M .

References
[1] Ruggero Lanotte, Massimo Merro: A semantic theory of the Internet of Things. Inf. Comput.

259(1): 72-101 (2018).
[2] C. A. R. Hoare and Jifeng He. Unifying Theories of Programming. Prentics Hall International Series

in Computer Science, 1998.
[3] https://github.com/Cnn-c/Denotational-and-Algebraic-Semantics-for-the-CaIT-calculus.git

3


	Introduction
	The CaIT Calculus
	Syntax
	Guarded Choice

	Denotational Semantics and Algebraic Semantics
	Denotational Semantics
	Algebraic Laws


