
Formal Verification of Infrastructure as Code ∗

Michele De Pascalis12

1 Tallinn University of Technology, Tallinn, Estonia
michele.de@taltech.ee

2 Politecnico di Milano, Milan, Italy
michele.depascalis@mail.polimi.it

Abstract

Infrastructure-as-Code is a system administration and software management paradigm
that gained relevance in the industry with the widespread adoption of cloud computing
technologies. Although IaC theoretically opens up the possibility for automatic verification
of infrastructural specifications, available works on the subject focus on analysing
operational aspects of the infrastructure lifecycle, such as deployment, orchestration and
management. Little effort has been performed towards verifying structural and qualitative
aspects of infrastructural code. In this document, we present DOML-MC, a prototype
model checker back-end for DOML, an IaC language that is being developed as part of
the PIACERE project. Infrastructural elements, their attributes and associations between
them are encoded as an SMT problem, which is solved by the Z3 SMT solver. This approach
proved useful to check critical or desirable properties of the analysed IaC document, but
also to seek ways in which the infrastructure could be enriched to meet such properties.

Keywords: Infrastructure-as-Code, Satisfiability Modulo Theories, Model Checking

1 Introduction

Infrastructure-as-Code (IaC) is an infrastructure management and software deployment metho-
dology that has become prevalent in the industry, shortly after the spread of cloud computing.
Describing computing infrastructure in a formal language with determined semantics, this
approach renders an array of techniques available for infrastructural code, techniques that
were originally developed targeting source code of software programs, in the scope of software
development.

Among such techniques are those inspecting the code to perform automatic formal
verification, including model checking. Works such as Jayaraman et al. [5], Brogi et al. [1],
Chareonsuk and Vatanawood [2], Shambaugh et al. [8], Lepiller et al. [7], Yoshida et al.
[9], adopted model checking technologies to target IaC, focusing on operational and security
properties such as idempotency, provisioning schedule validity and exposure to vulnerabilities
during operation. Law and Russo [6] provided an example of checking logical properties
concerning the described infrastructure, through a purposefully-developed Constraint Definition
Language (CDL).

In this work, we explore the methodologies for performing model checking of declarative and
structural properties of infrastructure described through IaC. We target the DevOps Modelling
Language (DOML) [3], an IaC language developed within the scope of the PIACERE project.
Programming trustworthy Infrastructure As Code in a sEcuRE framework (PIACERE) [4] is a
research project in software engineering, funded as part of the European Union Horizon 2020

∗This extended abstract is based on a Master’s Thesis supervised by Matteo Pradella and Michele Chiari
(Politecnico di Milano).



Formal Verification of Infrastructure as Code Michele De Pascalis

programme, aiming to develop new methodologies for IaC. This involves the development of an
IaC language (DOML), as well as tools supporting its usage, such as, among others, an IDE,
a tool to translate it into existing executable IaC languages, and a set of tools to verify the
validity and safety of the described infrastructure.

After evaluating the fitness of logical back-ends such as Prolog, a logic programming
language, and Z3, an SMT solver, we develop DOML-MC, a model checker back-end parsing
IaC written in a JSON internal format of the DOML, and encoding it into an SMT problem.

2 DOML-MC: a model checker back-end for DOML

DOML-MC is a tool encoding DOML documents in an SMT problem: by adding a set of
assertions, this makes it possible to use an SMT solver such as Z3 to verify properties of
the modelled infrastructure, or to complete the model to obtain a model that satisfies such
properties.

The format of the DOML used as a target for the tool is a provisional JSON format, that was
proposed by the PIACERE team responsible for infrastructural code generation. This format
was later abandoned, but the results accomplished in the development of the tool apply to all
versions of the DOML that are designed following the specification in [3] more or less closely.

2.1 SMT representation

The specification in [3] was used to derive a metamodel for the DOML, which describes an
infrastructure in terms of elements belonging to classes. Classes are related through class-
subclass relationships. Elements have attributes and are related among themselves through
associations. An element is allowed to have a certain attribute, or to be the source for a
certain association, if these appear in the definition of its class, or a superclass of its class. For
attributes and associations, multiplicity bounds can be specified, e.g., if an association has an
upper bound of 1 on its multiplicity, each element can have at most an element associated to it
through such association. The metamodel was encoded in a machine-readable YAML format.

Tracing this metamodel, in order to represent infrastructural information in the SMT
problem, finite sorts are created for elements, classes, attributes and associations. An additional
sort encodes the string values found in the DOML document as string symbols; this sort
is embedded, together with the sorts for integers and booleans, in a tagged union sort to
represent attribute values. A function is declared to relate elements to their classes, one to
relate elements and attributes, and one to relate elements to elements through associations.
Then, a set of assertions, ensuring that the interpretations for these functions are coherent with
the metamodel, is added to the SMT problem.

The target DOML document is parsed and translated to an intermediate model based on
the metamodel. This is used to provide the values for the sort of elements, and to derive
a set of assertions constraining the values of the declared functions to match the described
infrastructure.

2.2 Usage

Z3 can be used to solve the generated SMT problem as-is to ensure its coherency with the
metamodel. The added assertions are tracked with unique labels, so that, in case of a negative
answer, Z3 can provide a set of reasons that is sufficient to observe incoherency. In order to

2



Formal Verification of Infrastructure as Code Michele De Pascalis

verify additional properties, special assertions can be added to the SMT problem after the base
construction above.

Moreover, by inserting additional values in the sort of elements, which are not constrained
by the assertions generated from the intermediate model, Z3 can find interpretations for the
declared functions that are compatible with the metamodel assertions, or with any additional
assertion. This capability can be exploited to perform model synthesis.

2.2.1 An example property

Let ACN stand for the association infrastructure ComputingNode::ifaces, and let AS stand
for the association infrastructure Storage::ifaces. Then the following assertion ensures
that a network interface cannot be shared between two infrastructural elements:

∀(e1, e2, i : Element).(association(e1, ρACN
, i) ∨ association(e1, ρAS

, i))

∧ (association(e2, ρACN
, i) ∨ association(e2, ρAS

, i))

→ e1 = e2

(1)

The property can be encoded as an SMT assertion. As an example, consider a topology with
two virtual machines wpvm and dbvm, sharing a network interface wpvm niface: DOML-MC can
be used to generate an SMT problem encoding the metamodel, the topology, and assertion (1).
When Z3 is run on the problem, it returns unsat, meaning that the constraints given by the
metamodel, the description of the topology and the added assertion are not satisfiable together.
When asked for an unsatisfiable core, Z3 provides the following list of labels:

[associations wpvm wpvm_niface,

associations dbvm wpvm_niface,

iface_uniq]

2.3 Performance evaluation

DOML-MC was evaluated with four DOML documents, testing its capability to verify the basic
coherency with the metamodel, and its ability to enrich a model in order to satisfy additional
properties. This was performed both in two distinct solving procedure executions, and as
a cumulative execution, to test the hypothesis that the incremental solving of the enriched
problem performs better than solving the cumulative problem ex novo.

The largest DOML document that was used presented 49 elements, 66 attributes and 54
associations. Over 20 iterations, the solving procedure took 14 seconds to verify metamodel
coherency, 42.43 seconds to perform model synthesis with additional assertions incrementally,
and 50.85 seconds to perform it non-incrementally.

3 Conclusions and future developments

The chosen approach to model checking of IaC proved to be useful for the verification of
structural properties of the targeted infrastructural descriptions. Moreover, due to the model-
finding capabilities of SMT solving, encoding a metamodel describing the acceptable IaC
models, and the IaC model itself as an SMT problem has a dual advantage. By fully specifying
the target model, one can check its coherency with the metamodel assumptions, or with any
additionally specified property; by underspecifying the target model, the SMT solver can be

3



Formal Verification of Infrastructure as Code Michele De Pascalis

used to complete the unspecified parts of the model, and this result can be used to resynthesize
an IaC description that satisfies the provided assumptions, or to derive instructions for the user
to produce the desired IaC document.

The execution times resulting from the benchmark show that model checking of medium-
large models is not instantaneous, but model checking is traditionally known to present long
execution times. For a comparison with a tool undertaking similar tasks, in [6] the developed
verification tool is reported to take “seconds” for most of the models in the example repository.

The structure of the metamodel is flexible enough to allow for the metamodels of different
infrastructural representations to be adapted to be compatible with DOML-MC. It could thus
be worthwhile to attempt to reuse its intermediate model to encode and analyse different IaC
languages.

As it stands, DOML-MC is only a back-end. In order to render it operable by the end-
user, some sort of user interface needs to be developed. This could be in the form of an
IDE integration, being that PIACERE also focuses on the development of an IDE, and of a
specification language, as was done in the prototypes described above.

Lastly, the metamodel extracted from [3] is too abstract to ensure that synthesized models
correspond to realistic infrastructure. Additional assertions ought to be added to the generated
SMT problem to address this problem. An initial source for assertions can be found in the
constraints specified in [3] itself, but these will likely not be sufficient.

References

[1] A. Brogi, A. Canciani, and J. Soldani. “Modelling and Analysing Cloud Application
Management”. In: Proc. 4th Eur. Conf. Service Oriented Cloud Comput. ESOCC’15.
Vol. 9306. LNCS. Springer, 2015, pp. 19–33. doi: 10.1007/978-3-319-24072-5_2.

[2] W. Chareonsuk and W. Vatanawood. “Formal verification of cloud orchestration design
with TOSCA and BPEL”. In: 2016 13th International Conference on Electrical Engineering/
Electronics, Computer, Telecommunications and Information Technology, ECTI-CON
2016 (Sept. 2016). ISBN: 9781467397490 Publisher: Institute of Electrical and Electronics
Engineers Inc. doi: 10.1109/ECTICON.2016.7561358.

[3] P. Consortium. Deliverable D3.1: PIACERE Abstractions, DOML and DOML-E - v1.
https://www.piacere-project.eu/public-deliverables. 2021.

[4] P. Consortium. PIACERE. Programming trustworthy Infrastructure As Code in a sEcuRE
framework. Horizon 2020 project proposal, ID: 101000162. 2020.

[5] K. Jayaraman et al. Automated Analysis and Debugging of Network Connectivity Policies.
Tech. rep. MSR-TR-2014-102. Microsoft, 2014. url: https : / / www . microsoft . com /
en-us/research/publication/automated-analysis-and-debugging-of-network-

connectivity-policies/.

[6] M. Law and A. Russo. Deliverable D4.1: Constraint Definition Language. https : / /

radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-

associated-vt/. 2019.

[7] J. Lepiller et al. “Analyzing Infrastructure as Code to Prevent Intra-update Sniping
Vulnerabilities”. In: Proc. 27th Int. Conf. Tools Alg. for the Constr. and Anal. of Syst.,
TACAS’21, Part II. Vol. 12652. LNCS. Springer, 2021, pp. 105–123. doi: 10.1007/978-
3-030-72013-1_6.

4

https://doi.org/10.1007/978-3-319-24072-5_2
https://doi.org/10.1109/ECTICON.2016.7561358
https://www.piacere-project.eu/public-deliverables
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://radon-h2020.eu/2020/03/06/radon-constraint-definition-language-and-its-associated-vt/
https://doi.org/10.1007/978-3-030-72013-1_6
https://doi.org/10.1007/978-3-030-72013-1_6


Formal Verification of Infrastructure as Code Michele De Pascalis

[8] R. Shambaugh, A. Weiss, and A. Guha. “Rehearsal: a configuration verification tool for
puppet”. In: Proc. 37th ACM SIGPLAN Conf. Program. Lang. Des. Impl., PLDI’16. ACM,
2016, pp. 416–430. doi: 10.1145/2908080.2908083.

[9] H. Yoshida, K. Ogata, and K. Futatsugi. “Formalization and Verification of Declarative
Cloud Orchestration”. In: Proc. 17th Int. Conf. Formal Methods Softw. Eng., ICFEM’15.
Vol. 9407. LNCS. Springer, 2015, pp. 33–49. doi: 10.1007/978-3-319-25423-4_3.

5

https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1007/978-3-319-25423-4_3

	1 Introduction
	2 DOML-MC: a model checker back-end for DOML
	2.1 SMT representation
	2.2 Usage
	2.2.1 An example property

	2.3 Performance evaluation

	3 Conclusions and future developments

