
Regular Monoidal Languages∗

Matthew Earnshaw and Pawe l Sobociński

Tallinn University of Technology, Estonia

Abstract

We introduce regular languages of morphisms in free monoidal categories. These sub-
sume the classical theory of regular languages of words and trees, but also open up a much
wider class of string diagram languages. We use monoidal and cartesian restriction cate-
gories to investigate the properties of regular monoidal languages, and provide a sufficient
condition for recognition by deterministic monoidal automata.

1 Introduction
Formal language theory extends beyond words to infinite words, rational sequences, trees,
countable linear orders, graphs of bounded tree width, etc. Recently, the unity of the field has
been better understood by seeing such structures as arising from monads on the category of
sets [1].

Here we make a step in extending language theory to higher-dimensional algebraic struc-
tures, moving from subsets of free monoids (classical languages) to subsets of morphisms in
strict monoidal categories. By investigating morphisms in free monoidal categories from the
perspective of language theory, this work contributes to research into the computational ma-
nipulation of string diagrams, and so their usage in industrial strength applications [2, 6, 9].

Section 2 introduces the definitions of monoidal language and regular monoidal grammars,
with examples. Section 3 introduces monoidal automata, and a determinizable subclass. Section
4 introduces an invariant of languages that provides a sufficient condition for determinizability.

2 Regular monoidal grammars and their languages
Classically, languages over an alphabet Σ are subsets of the free monoid Σ∗. Monoidal languages
are defined similarly, replacing free monoids with free strict monoidal categories (free pros).

A monoidal graph is given by edges (represented by boxes) bounded by source/target words
of vertices (e.g. left below). When the set of vertices is a singleton, these words are natural
number arities/coarities – we call such monoidal graphs monoidal alphabets (e.g. right below):

A

B
γ

A
B
A

A γ′ B

B

∣∣∣∣∣ γ γ′

The components of a monoidal graph are generators for free pros, with objects words of
vertices, and morphisms string diagrams built from the edges of the monoidal graph by serial
and parallel composition (see [4, Appendix A]).

Definition 2.1. A monoidal language L over a monoidal alphabet Γ is a subset L ⊆ FΓ(0, 0)
of morphisms with arity and coarity 0 in the free pro generated by Γ.

∗This is an extended abstract of the paper [4]. This research was supported by the ESF funded Estonian IT
Academy research measure (project 2014-2020.4.05.19- 0001). The second author was additionally supported
by the Estonian Research Council grant PRG1210.

Regular Monoidal Languages Earnshaw and Sobociński

Regular monoidal grammars are a finite specification of monoidal languages analogous to
classical regular languages, generalizing Walters’ definition of regular grammar [8]:

Definition 2.2. A regular monoidal grammar is a morphism of finite monoidal graphs Ψ :
M → Γ where Γ is a monoidal alphabet. Every regular monoidal grammar determines a pro
morphism between free pros, FΨ, which we also refer to as a regular monoidal grammar.

Intuitively, a regular monoidal grammar is a labelling of the edges of the monoidal graph
M by edges in Γ. Given a string diagram s ∈ FΓ, we can think of the set of string diagrams
FΨ−1(s) the possible “parsings” of that diagram. Regular monoidal grammars have a simple
graphical representation illustrated in the examples below: we draw the monoidal graph M but
label its boxes by their image under Ψ.

Definition 2.3. Given a regular monoidal grammar Ψ : M → Γ, the image under FΨ of
the endo-hom-set of the monoidal unit ε in FM is a monoidal language FΨ[FM(ε, ε)] ⊆
FΓ(0, 0). We call the class of monoidal languages determined by regular monoidal grammars
the regular monoidal languages.

Diagrammatically, a regular monoidal language consists of the string diagrams with no
dangling wires that can be built using the “typed” building blocks of a grammar, then forgetting
the types:

Example 2.4 (Sierpiński triangles). Self-assembly of DNA tiles has been used to compute
Sierpiński triangle fractals of arbitrary iteration depth [7]. This work implicitly uses a monoidal
grammar (left below, where we use colours for the alphabet). An element in the language defined
by this grammar is shown on the right.

In the following examples, we consider monoidal languages up to their connected string
diagrams:

Example 2.5 (Balanced parentheses). Recall that the Dyck language is a paradigmatic example
of a non-regular word language. However, we can represent balanced parentheses using the
regular monoidal grammar shown below left. An example of a morphism in the language defined
by this grammar is shown on the right.

A (A
A

B
) A

A

B
A (

()
)

This shows how regular monoidal grammars permit unbounded concurrency. As one scans
from left to right, the (unbounded) size of the internal boundary of a string diagram tracks the
number of open left parentheses. This also indicates an interesting connection between regular
monoidal languages and context-free languages that we will examine in future work.

Example 2.6. Regular grammars are monoidal grammars over alphabets having only generators
σ of arity and coarity 1, along with a start generator and end generator .

2

Regular Monoidal Languages Earnshaw and Sobociński

Example 2.7. Regular tree grammars are monoidal grammars over alphabets having only gen-

erators σ ... of arity 1 (and coarity ⩾ 0), along with a single “root” generator .

Remark 2.8. Regular monoidal languages enjoy several closure properties: intersection, union,
monoidal product/factors, images and preimages of alphabets, but not complementation.

3 Monoidal automata and convex monoidal automata
Monoidal grammars can also be considered as depicting transition graphs ofmonoidal automata:

Definition 3.1. A non-deterministic monoidal automaton ∆ = (Q,∆Γ) over a monoidal alpha-
bet Γ is given by a finite set Q, together with a set of transition functions indexed by generators

∆Γ = {Qar(γ) ∆γ−−→ P(Qcoar(γ))}γ∈Γ.

The inductive extension of a monoidal automaton from generators to string diagrams deter-
mines a unique pro morphism ∆ : FΓ → RelQ, where a morphism n → m in RelQ is a relation
R ⊆ Qn × Qm. ∆ maps a string diagram with no dangling wires to one of the two relations
from Q0 to Q0 (accepting or rejecting) and thus define the language of the automaton.

Remark 3.2. The non-deterministic monoidal automata determined by the grammars of Ex-
amples 2.6 and 2.7 correspond to classical non-deterministic automata over words and trees.

Deterministic monoidal automata can be defined in a similar way. Since top-down tree
automata are not determinizable [5], monoidal automata are not determinizable in general,
and it is an intriguing theoretical challenge to characterize the deterministically recognizable
monoidal languages. Below we describe a class of determinizable monoidal automata, and give
a powerset construction.

Definition 3.3. A relation ∆ : Qn → P(Qm) is convex if there is a morphism ∆∗ : P(Q)n →
P(Q)m such that ∇m ◦∆∗ = ∆# ◦ ∇n, where ∆# : P(Qn) → P(Qm) is the Kleisli lift of ∆,
and ∇n : P(Q)n → P(Qn) is the monoidal multiplication of the monoidal monad P.

Convex relations determine a sub-pro CRelQ ↪→ RelQ, and an automaton ∆ : FΓ → RelQ
is convex if it factors through CRelQ. Convex automata can be determinized by a form of
powerset construction. In particular, bottom-up regular tree automata and word automata
seen as monoidal automata (Remark 3.2) are convex.

We have also shown that deterministically recognizable monoidal languages have the prop-
erty of causal closure. Roughly this means they contain all the string diagrams that can be
written as monoidal products of tree-like sub-diagrams, subject to the equational theory of
cartesian restriction categories [3].

4 Syntactic pro gives sufficient condition for determinism
By analogy with the syntactic monoid of a word language, the syntactic pro associated to a
monoidal language identifies string diagrams up to contextual equivalence. When this pro has
cartesian restriction category structure [3], the language is determinizable (Theorem 4.4).

Definition 4.1. An (n,m)-context is a 0 → 0 string diagram with a hole
of size (n,m), where n,m ⩾ 0 (depicted right). Given an (n,m)-context,
we can fill the hole with a morphism γ : n → m. Write C[γ] for the
resulting string diagram.

...

......α β}n m{

...

3

Regular Monoidal Languages Earnshaw and Sobociński

Definition 4.2. The syntactic congruence ≡L of a monoidal language L over Γ is defined by
α ≡L β whenever C[α] ∈ L ⇐⇒ C[β] ∈ L, for all (n,m)-contexts C, where α, β ∈ FΓ(n,m).

Definition 4.3. The syntactic pro of a monoidal language L is the quotient pro FΓ/≡L.

Theorem 4.4. If the syntactic pro of a regular monoidal language is a cartesian restriction prop
(a pro with symmetric monoidal structure), then the language is recognizable by a deterministic
monoidal automaton.

We also have one direction of a Myhill-Nerode type theorem:

Lemma 4.5. If a monoidal language L is regular, its syntactic pro FΓ/≡L has finite hom-sets.

References

[1] Miko laj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic monadic second order logic. 2022.

[2] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String
diagram rewrite theory I: Rewriting with Frobenius structure. J. ACM, 69(2), mar 2022.

[3] Ivan Di Liberti, Fosco Loregian, Chad Nester, and Pawe l Sobociński. Functorial semantics for
partial theories. Proc. ACM Program. Lang., 5(POPL), January 2021.

[4] Matthew Earnshaw and Pawe l Sobociński. Regular monoidal languages. arXiv, 2022.

[5] Ferenc Gécseg and Magnus Steinby. Tree automata, 2015.

[6] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic rea-
soning. In Automated Deduction - CADE-25, pages 326–336. Springer, 2015.

[7] Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
Sierpiński triangles. PLOS Biology, 2(12), 12 2004.

[8] R.F.C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra, 62(2):199–
203, 1989.

[9] Vladimir Zamdzhiev. Rewriting Context-free Families of String Diagrams. PhD thesis, University
of Oxford, 2016.

4

	Introduction
	Regular monoidal grammars and their languages
	Monoidal automata and convex monoidal automata
	Syntactic pro gives sufficient condition for determinism

