
Safe and Secure Software-Defined Networks in P4

Jens Kanstrup Larsen and Alceste Scalas

Technical University of Denmark — {jekla,alcsc}@dtu.dk

Abstract

Software-Defined Networking (SDN) is a modern approach to network management that
uses programmable controllers to direct and reconfigure the flow of network traffic. The
P4 programming language is an open source, vendor-neutral standard adopted by an ever-
increasing set of programmable network control devices. SDN makes network management
more flexible — however, with increased programmability comes an increased possibility
of introducing bugs, resulting in network failures. Motivated by this, we aim to design and
develop a strongly-typed, statically-verified DSL for writing P4 control plane programs —
i.e. programs that update the configuration of programmable network controllers. In this
abstract we illustrate the problem, and outline our preliminary design and formalisation;
we also outline our longer-term vision of a fully-verified P4 programming pipeline, ensuring
that desired network properties will never be broken by configuration updates.

1 An overview of P4

The P4 SDN standard has two main components: a data plane programming language (called
P4), and a control plane programmer interface (called P4Runtime API).

A P4 data plane program specifies how a device is expected process network packets, via
tables that match incoming packets (e.g. by inspecting their IP protocol header) and perform
actions (e.g. drop a packet, of forward it to another network device). P4 data plane programs
are compiled, deployed and executed on P4-compatible network routers; the hardware ven-
dors typically provide the necessary compiler. When compiling a P4 data plane program, an
associated P4info file is generated, which describes the routing tables and their actions.

The P4 control plane API (P4Runtime) specifies how an external program (a P4Runtime
client) can interact with a P4-enabled device (a P4Runtime server), e.g. to query its routing
tables and actions or update them, thus changing the network configuration. When interacting
with a P4Runtime server, the client API uses a P4Info file (see above) that is expected to match
the server configuration. The P4 workflow is outlined in figure 1 (left).

Some potential issues in P4Runtime programs. The P4Runtime API is defined by
a protobuf1 specification. Such specifications are language-independent, and provide limited
type information. From a Protobuf specification, various tools can automatically generate the
glue code which allows to perform P4Runtime API calls in various programming languages.
P4Runtime officially supports Python (by providing a ready-to-use APIs), resulting in appli-
cations similar to figure 1 (right): that code inserts a new table entry into a table called
"IPv4 table", which compares a packet’s IPv4 address field (called "dst addr") with the
dst ip addr value, running the action "Tunnel Ingress" if it matches. Observe that the ta-
ble, field and action names in figure 1 are all provided as strings. The P4Runtime API performs
some runtime checks (based on the aforementioned P4Info file) to verify whether e.g. a table
called "IPv4 table" exists on the server, and whether it has a match field called "dst addr",
and a possible action called "Tunnel Ingress"; if not, it raises an exception — and only then

1https://developers.google.com/protocol-buffers

https://developers.google.com/protocol-buffers

Safe and Secure Software-Defined Networks in P4 Larsen and Scalas

t ab l e en t r y = p4 i n f o h e l p e r . bui ldTableEntry (
table name=” IPv4 Table ” ,
ma t ch f i e l d s={

” dst addr ” : (d s t ip addr , 32)
} ,
act ion name=”Tunne l Ingres s ” ,
act ion params={

” d s t i d ” : tunne l id ,
})

i n g r e s s sw . WriteTableEntry (t ab l e en t r y)

Figure 1: The P4 workflow (image from https://p4.org/) and a P4Runtime client program
(from https://github.com/p4lang/tutorials/blob/master/exercises/p4runtime/mycontroller.py).

would the client know that their P4Runtime API calls are incorrect. This run-time excep-
tion may crash or halt the P4Runtime client program, thus leaving a network unconfigured, or
partially configured; we want to spot this mistake (and others) statically.

2 Towards a DSL for safe P4 control plane programs

To address the issues outlined in Section 1, we aim at designing and developing a strongly-
typed DSL for P4 control plane programs, able to statically ensure that P4Runtime client-server
interactions never go wrong. The key idea is that we want to capture information available in
the P4Info file at the type level, and provide a generic, strongly-typed P4Runtime client API
that adds stricter type checks on top of the existing (weakly-typed) Protobuf-based API.

type TableActions [T] =
T match

” IPv4 Table ” =>
”Drop”

| ” IPv4 Forward”
| ”Tunne l Ingre s s ”

”Tunnel Table ” =>
”Drop”

| ”Tunnel Forward”
| ”Tunnel Egress ”

Our plan is to design an embedded DSL that reuses (as much
as possible) the typing system of an existing host language,
and only adds a thin layer on top of the Protobuf-generated
P4Runtime API. In particular, we plan to leverage three pow-
erful features of the Scala 3 programming language: singleton
types, dependent function types, and match types. For exam-
ple, consider the match type on the left: it says that the type
TableActions[T] is determined by the type argument T; and in
particular, an instance of type TableActions["IPv4 Table"]

(where "IPv4 Table" is the singleton type only inhabited by the homonymous string) is the
union between the singleton types "Drop", "IPv4 Forward" and "Tunnel Ingress". By com-
bining these match type constraints with Scala 3’s dependent function types, we plan to design
a strongly-typed P4Runtime API such that, if a table called "IPv4 Table" is being updated (as
in fig. 1), then the programmer can only provide an action between "Drop", "IPv4 Forward",
or "Tunnel Ingress"; other actions (like "Tunnel Forward" or "Tunnel Egress") are only
available when updating other tables (in this example, "Tunnel Table").

Preliminary formalisation. Our formalisation models simple networks with one P4Runtime
server and one client; we will later address networks with multiple clients and servers.

To allow for a smooth transition between formalisation and implementation as embedded
Scala 3 DSL, we formalise a version of F<: (System F with subtyping) extended with communi-
cation and concurrency primitives (inspired by the π-calculus) and elements of Scala 3 singleton

2

https://p4.org/
https://github.com/p4lang/tutorials/blob/master/exercises/p4runtime/mycontroller.py

Safe and Secure Software-Defined Networks in P4 Larsen and Scalas

types, dependent function types, and match types taken from [2]. This design is inspired by λπ
⩽

[10]. The resulting syntax of a P4Runtime client (t) and its types (T) is summarised below. Due
to space limits, we omit the syntax of P4Runtime servers and networks, and their semantics.

t ::= v | x | y | z | . . .
| end t | t >> t
| {f1 = t1, . . . , fn = tn}
| t.f | λx : T.t | λX <: T.t
| t t | t T | op(t)

| t match {x : T ⇒ t}

v ::= 0|1|2| . . . |tt|ff|"string"| . . .
| {f1 = v1, . . . , fn = vn}
| λx : T.t (with fv(t) ⊆ {x})

op ::= read | insert

| modify | delete

T ::= Int | Bool | Str | . . .
| {f1 : T1, . . . , fn : Tn}
| X | Πx : T.T
| ∀X <: T.T

| T match {T ⇒ T}
| v

The syntax includes ground types and values (integers, booleans, . . .), records, function
abstraction and application, and several operations (op) which are abstractions of the actual
P4Runtime API calls. Furthermore, it has dedicated constructs for monadic operations, namely
end (unit) and >> (bind), which are meant to encapsulate the effects of the P4Runtime API.

The key elements of the type system are the match construct, dependent function types
(Πx : T.T), and the singleton type constructor v. A match on types is conceptually similar to
a match on terms. The singleton type constructor v represents the unique type only inhabited
by the value v. For example, 42 is the type of the integer 42, and 42 is also a subtype of the
Int type, i.e. 42 <: Int. Our plan is to use a given P4Info file to synthesise a set of match type
constraints similar to TableActions (shown in the opening of this section), in order to validate
the usage of the P4Runtime operations (read, insert, modify, delete).

3 Conclusion

We outlined our preliminary work towards an embedded DSL for safe and secure P4 control
plane programs. Our next goal is to complete the DSL formalisation, prove its properties, and
implement it, supporting the essential P4Runtime API calls. The DSL type safety will ensure
that critical P4Runtime errors (e.g. updating a nonexistent table) are caught at compile time.

From there, our longer-term plan is to achieve a fully verified P4 programming pipeline
where strongly-typed P4Runtime control plane programs only deploy verified data plane con-
figurations, ensuring that desired network properties (such as node reachability) are preserved
across updates. This is a much more ambitious goal, that will require the verification of whole
networks of P4-enabled devices, and will combine both data plane and control plane verification.

Related Work. Several works address the verification of the control plane in various
models of software-defined networks — but (to the best of our knowledge) no previous work
addresses the P4 control plane. [9][4] are graph-based in their analysis, and they focus on the
BGP routing protocol. FSR [11] introduces a new type of analysis based on routing algebra,
still focused on BGP. Batfish [5] is a protocol-agnostic tool that also considers data plane
snapshots when performing analysis. Notably, Batfish supports compiling many vendor-specific
configuration languages to an intermediary language. For this reason, many subsequent tools
base their verification on this intermediary language. The recent work [3] proposes a formal
language for analysing the control/data plane interactions in SDNs based on NetKAT [1].

Several tools specifically analyse P4 data plane programs. Their methodologies include
translation to the verifiable language Datalog [8], static analysis based on formal semantics [6],
and program annotations [7]. However, no tool currently exists for analyzing the P4 control
plane, and in particular, there is no existing tool for verifying P4Runtime API calls.

Acknowledgements. We thank the anonymous reviewers of NWPT 2022, and our col-
laborators Philipp Haller and Roberto Guanciale (KTH) for their suggestions and feedback.

3

Safe and Secure Software-Defined Networks in P4 Larsen and Scalas

References

[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. SIGPLAN Not.,
49(1):113–126, jan 2014.

[2] Olivier Blanvillain, Jonathan Brachthäuser, Maxime Kjaer, and Martin Odersky. Type-level pro-
gramming with match types. Technical report, 2021.

[3] Georgiana Caltais, Hossein Hojjat, Mohammad Reza Mousavi, and Hünkar Can Tunç. DyNetKAT:
An algebra of dynamic networks. In Patricia Bouyer and Lutz Schröder, editors, Foundations of
Software Science and Computation Structures - 25th International Conference, FOSSACS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13242 of Lecture Notes in Computer
Science, pages 184–204. Springer, 2022.

[4] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults with static analysis. In
Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation-
Volume 2, pages 43–56, 2005.

[5] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul Mahajan,
and Todd Millstein. A general approach to network configuration analysis. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages 469–483, 2015.

[6] Ali Kheradmand. A formal semantics of P4 and applications. Master’s thesis, 2018.

[7] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé, Han
Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4v: Practical verification for pro-
grammable data planes. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on data communication, pages 490–503, 2018.

[8] Nuno Lopes, Nikolaj Bjørner, Nick McKeown, Andrey Rybalchenko, Dan Talayco, and George
Varghese. Automatically verifying reachability and well-formedness in p4 networks. Technical
Report, Tech. Rep, 2016.

[9] Bruno Quoitin and Steve Uhlig. Modeling the routing of an autonomous system with c-bgp. IEEE
network, 19(6):12–19, 2005.

[10] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs with
dependent behavioural types. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 502–516, 2019.

[11] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer Rexford, Vivek
Nigam, Andre Scedrov, and Carolyn Talcott. Fsr: Formal analysis and implementation toolkit for
safe interdomain routing. IEEE/ACM Transactions on Networking, 20(6):1814–1827, 2012.

4

	An overview of P4
	Towards a DSL for safe P4 control plane programs
	Conclusion

